YAFA

YAFA

COLLABORATORS
TITLE :
YAFA
ACTION NAME DATE SIGNATURE
WRITTEN BY August 5, 2022
‘ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

YAFA iii

Contents

1 YAFA 1
L1 YAFA o e 1
1.2 YAFA/IntroduCtion 0 v i e e e e e 1
1.3 YAFA/Description o o e e e e e e e e |

1.4 YAFA/Contact

YAFA 1/5

Chapter 1

YAFA

1.1 YAFA

Y AF A
An IFF Format For Animations

Introduction
Description

Contact
Release V1.0 (26-May-96)

1.2 YAFA/Introduction

The animation file format YAFA provides features not seen in other
formats, and its main advantage is the great number of different ways
to store the animation frames.

Here is a list of the main features:

-bit depth 1...8 (2...256 colors, HAM6 and HAMS)
-planar or chunky frames

—-optional timecode-per-frame

—-optional palette-per—-frame

—-optional delta-compression (similar to IFF ANIM)
—optional XPK-compression

—annotations

Using the compression options it is possible to optimize a YAFA file

for maximum playback speed or minimum storage size. Chunky frame data
usually compresses better and can be displayed directly on gfx boards.

1.3 YAFA/Description

YAFA

YAFA files are made of chunks just like specified in the IFF
standard.

In the text below the special chunks defined for YAFA and their structure
are explained. Please note that there may very well be some extensions
in the future. If you are interested in including your own ideas in YAFA
please let

us

know.
(things to think about: depth>8, other (better) compression ...)

FORM YAFA

.INFO general information

.DRGB palette (useless with palette-per—-frame)

.DLTX delta expansion (useless without delta compression)
.PROF frame offsets (useless without any compression)
.TTBL timecodes for each frame (used if present)

.ANNO annotation

.BODY frames (and palette-per—frame)

The order of the chunks is not important except that the BODY chunk must
be the last chunk in the file.
Chunks that are useless in a special file should be omitted.

INFO

This chunk is mandatory for YAFA files. It contains data about the frames
and specifies which optional features are used.

UWORD width (in pixels - must be a multiple of 16)

UWORD height (in pixels)

UWORD depth (currently supported: 1...8)

UWORD speed (playback speed, each anim frame is displayed this number
of video frames, frames-per-second can be calculated by
dividing video-frames-per-second (ie. PAL: 50) by speed)

UWORD frames (number of frames)
UWORD frametype (currently supported are:
0 planar

1 planar with XPK compression
3 chunky 8bit with XPK compression
4 chunky 8bit
UWORD flags (set bits have following meanings:
BIT 0 Hold-And-Modify mode (HAM)
BIT 1 palette-per—-frame (’dynamic palette’)
BIT 2 delta compression, the next two bits specify
the type:
BIT 4 set — LONG
else BIT 3 set — WORD
else BYTE
other bits are unused, clear them for future compatibility)

DRGB

YAFA 3/5

This chunk contains the palette used for all frames. It can be omitted when
dynamic palette is enabled.

The palette is stored in a loadrgb structure which can be used as a parameter
for graphics/LoadRGB32 () for instance.

struct loadrgb
{

UWORD count; (number of colors)

UWORD first; (number of the color register to receive the first color
in this structure)

ULONG colors []; (array of color values, each color value consists of three

longwords containing the Red, Green and Blue components in
their highest bytes)
bi

DLTX

This chunk is only useful in files with delta-compressed frames. It contains
ULONG dltx that is the number of bytes by which the largest

delta-compressed frame is larger than a uncompressed frame. If there is

no delta frame larger than an uncompressed frame then dltx is NULL.

Also if the frames are delta-compressed and the DLTX chunk is missing

the value for dltx should be considered as NULL.

This value is needed for allocating memory for frame buffers, you have to
take (uncompressed size + dltx) bytes.

PROF

This chunk contains an array of ULONG values that are the offsets of each
frame’s end from the beginning of the BODY. In YAFA files without compression
all frames have the same size and the offsets can easily be calculated when
they are needed, the PROF 1is obsolete in this case.

If you need to know the size of a specific frame (ie. for loading) simply
calculate: size=PROF[i]-PROF[i-1]. (i = 1...number_of frames-1)

If you need to seek to a specific frame (ie. when skipping some frames) get
the offset from the beginning of the BODY out of the PROF: offset=PROF[i-1].
For the first frame you have to use: size=PROF[0] and offset=0.

TTBL

This chunk contains an array of UWORDs that are the speed values for each
individual frame. There is no explicit way to enable these timecodes, if
the chunk is present in a YAFA file it is used. Anyway, the global speed

in the INFO chunk is not obsolete, it must always be set to a legal value
(>0) . In the TTBL values of 0 are allowed, they Jjust mean not to take

a new speed but to use the one from the previous frame instead.

So you might want to add a TTBL chunk to all YAFA anims you create. If they
are not needed currently they can all be set to 0, so they have no effect
at all, but they can be edited later.

YAFA

4/5

ANNO

This chunk contains some additional information included by the creator

of the YAFA file. In order to allow the content to have an odd length and
to be able to extract exactly this odd length from the ANNO, there is

an ULONG value at the beginning of the chunk containing the real length

of the content. Behind the content there is a pad byte if needed to make
the chunk length even.

The content itself should be a printable zero-terminated ASCII-string. This
leaves the possibility to include binary files too, you just have to make
sure that there is a NULL byte in front of the binary stuff.

BODY

This chunk contains the frames one after another. It is not structured,
which means that you need the information stored in the other chunks to know
how to deal with the BODY chunk.

*planar:
simply raw bitplanes

*chunky:
one byte represents one pixel, the value is the color number,
valid for depth = 5...8 (unused bits are cleared ofcourse)

*XPK compression:
every frame is compressed individually,
use xpkmaster.library’s functions: XpkPack (), XpkUnPack ()

*Delta compression:
The delta compression used in YAFA is similar to the one in IFF ANIM7, but
in YAFA files the first two frames are uncompressed. Compressed frames
look like this:
-8 pointers to opcode lists
-8 pointers to data lists
—opcode lists (elements are bytes)
—-data lists (elements are bytes/words/longwords)
Unused pointers are set to NULL. (De-)Compression is performed on a
bitplane-by-bitplane basis. The bitplane is splitted into vertical columns
that are 8/16/32 pixels wide. (for byte/word/long compression)
The opcode lists consist of opcodes for every column. A column starts with
an opcode count. If the opcode count is zero it means that the complete
column remains unchanged. The opcodes are of three classes and refer to a
varying amount of data (to fetch from the corresponding data list) depending
on the class:
-skip op (non-zero, hi bit clear): skip this number of rows in the
destination bitplane
-unig op (non-zero, hi bit set): clear hi bit, the remainder is the
number of data items to copy (each item to the next destination row)
—-same op (zero): followed by a count byte, that says how many destination
rows are to be set to the same data item (the next item in the data list)

*combinations:

YAFA

5/5

All combinations of the above mentioned features are possible. When chunky
data is to be delta-compressed it is treated like it was planar with eight
bitplanes.
When reading a YAFA file do following steps (if necessary) :

-read frame (using PROF for size and offset)

—XpkUnpack ()

—delta—-decompress

—chunky to planar
When writing a YAFA file do the analogous steps in reverse order.

xdynamic palette:
colors are stored directly behind the frame they belong to in a loadrgb
structure (see DRGB chunk),
in case of XPK compression frame data and palette are compressed together,
you have to get the uncompressed size from XPK in order to be able to
calculate the start of the palette:
palette_pt = frame_pt + size - colorsize
with colorsize = number_of colors x 12 + 4

1.4 YAFA/Contact

The YAFA animation format is developed by WK-Artworks and Infect.

We are also programming our own player and processor/converter using
YAFA which are already available (ie. on Aminet). In order to make YAFA
more popular we ask programmers of image/animation software to support
this new format in their programs.

If you have any questions and/or suggestions you are welcome to contact:

Michael Henke (aka Smack/Infect)
Praetoriusstr. 1/205

06124 Halle/Saale

Germany

EMail: epgbd@clusterl.urz.uni-halle.de

or

Andreas Maschke (aka WK-Artworks)
ZenkerstralRe 5

06108 Halle/Saale

Germany

Phone: ++49 (0)345/5170331

EMail: epgbc@clusterl.urz.uni-halle.de

	YAFA
	YAFA
	YAFA/Introduction
	YAFA/Description
	YAFA/Contact

